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Abstract—Side-channel attacks recover confidential informa-

tion from non-functional characteristics of computations, such

as time or memory consumption. We describe a program anal-

ysis that uses symbolic execution to quantify the information

that is leaked to an attacker who makes multiple side-channel

measurements. The analysis also synthesizes the concrete public

inputs (the “attack”) that lead to maximum leakage, via a

novel reduction to Max-SMT solving over the constraints col-

lected with symbolic execution. Furthermore model counting and

information-theoretic metrics are used to compute an attacker’s

remaining uncertainty about a secret after a certain number

of side-channel measurements are made. We have implemented

the analysis in the Symbolic PathFinder tool and applied it in

the context of password checking and cryptographic functions,

showing how to obtain tight bounds on information leakage under

a small number of attack steps.

Index Terms—Side-Channel Attacks; Quantitative Information

Flow; Cryptography; Multi-run Security; Symbolic Execution;

Satisfiability Modulo Theories; Max-SMT

I. INTRODUCTION

Side-channel attacks recover secret inputs to programs from
non-functional characteristics of computations, such as time
consumed, number of memory accesses or size of output
files. Side-channel attacks have been shown to pose serious
threats by recovering cryptographic keys, e.g. when using the
well known RSA encryption/decryption algorithm [1], and
private information about users, e.g. as with commonly used
algorithms for data compression [2].

We propose a symbolic execution approach for the auto-
matic analysis of software that computes quantitative bounds
on the amount of information that can be leaked via side-
channel attacks. Technically we use the fact that the amount
of leaked information corresponds to the number of different
possible side-channel observations, which we compute using
symbolic execution and model counting via a reduction to
symbolic quantitative information flow analysis (QIF)[3], [4].
The analysis is parametrized by a cost model which allows
us to obtain side-channel measurements (time, memory, bytes
written to a file, etc.) from the execution of bytecode instruc-
tions. The “observables” are the values for the cost computed
for each path in the analyzed program. Furthermore we provide
a method for automatically deriving the public user input that
results into maximum leakage by using weighted Max-SMT
solving for which efficient procedures exist [5].

Our key insight is that Max-SMT solving can be used to
obtain the maximal assignment over the set of clauses obtained
with symbolic execution (i.e. any other assignment satisfies
less clauses) and this corresponds to the largest number of
observables that can be reached by a particular public input,
hence is the maximal leakage: any other choice of public input
would result in less observables. We show experimentally
that this new Max-SMT encoding can be more efficient than
established approaches based on bounded model checking over
program self-compositions [6] or on enumerating over the
concrete values.

Our Max-SMT approach generalizes naturally over
multiple-run side-channel attacks where we use symbolic
execution to quantify the information revealed to an attacker
after multiple channel measurements made. This corresponds
to a typical scenario where an attacker makes multiple guesses
by invoking and measuring the execution of the program
multiple times on different public inputs to gradually uncover
a secret that is constant across program runs (such as the secret
key used in the RSA encryption/decryption algorithm). Max-
SMT solving is used to compute a sequence of public inputs
that lead to maximum leakage, exposing the vulnerability of
the program to multi-run attacks.

Furthermore we show how to use an extension of symbolic
execution, namely with quantitative reasoning [7], [8], to
compute precise values for information theoretic metrics such
as Shannon or Smith’s min entropy [9]. The technique uses
model counting over the constraints collected by symbolic
execution, to compute the probability of executing different
program paths (under a user-specified profile). Thus we can
compute an attacker’s remaining uncertainty about a secret
after a number (k) of side-channel measurements made. We
can also determine whether a secret is fully revealed after k
runs or whether a program keeps leaking information after k
runs etc.

We have implemented the analysis in the Symbolic
PathFinder tool and show how to use it to measure side-
channel vulnerabilities for Java bytecode programs in the
presence of non-adaptive attacks. Our approach is general
and can be implemented easily in other symbolic execution
tools targeting other languages. We discuss the application
of our approach in the context of password checking and
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Fig. 1. Attacker Model

cryptographic functions, showing how to obtain tight bounds
on information leakage under a small number of attack steps.

The rest of the paper is organized as follows. In the next
section we give background on quantitative information flow
analysis, symbolic execution and constraint solving. We next
discuss how to perform side-channel analysis using symbolic
execution. Section IV outlines our Max-SMT encoding for
finding the low input that maximizes leakage. Section V
describes extending the analysis over multiple runs and Sec-
tion VI discusses treatment of multi-threading. Section VII
describes our implementation and experiments, Section VIII
gives closely related work and Section IX gives our conclu-
sions.

II. BACKGROUND

A. Quantitative Information Flow Analysis

Quantitative Information Flow (QIF) is a powerful ap-
proach to “measure” leaks of confidential information in a
software system. Typically simple, qualitative, information
flow analysis accepts programs as secure if confidential data
cannot be inferred by an attacker through their observations of
the system—this intuitive property is called non-interference.
Although satisfying non-interference is a sound guarantee for
a system to be secure, this requirement is too strict for most
realistic programs: to leak some information is almost unavoid-
able. By quantifying leakage QIF addresses this limitation:
not only programs with “zero interference” (non-interference)
can be accepted as secure, but also programs with “small”
interference.

Fig. 1 shows an example function that we use to illustrate
QIF. It is a convention in the security literature to use the
label L (low) to denote non-sensitive input, to use the label H
(high) to denote sensitive private input, and to use the label O
(output) to denote the output. A malicious user has access to
the public data, L and O, and tries to infer the hidden secret,
H, from that.

Similar to previous work[10] we assume that the malicious
user can make one side-channel measurement per invocation
of the program P and that no measurement errors occur.
Furthermore, we assume that the attacker has full knowledge
about the implementation of P .

A fundamental QIF result (the channel capacity theorem
[11], [9]) shows that leakage for a program is always less
than or equal to the log of the number of possible distinct
observations that an attacker can make. By noting these
observables with (NObs) and channel capacity with CC, we
have hence:

Information leaked  log2(NObs) = CC(P )

The result states in essence that QIF reduces to counting
the number of different observable outputs for the program.
The result holds for different notions of leakage based on the
probability of guessing the secret or the notion of leakage
based on Shannon’s information theory measuring the number
of bits leaked. For these reasons counting the number of
observables is the basis of state-of-the-art QIF analysis [6],
[12], [13], [14], [15], [16].

B. Symbolic Execution
Symbolic execution is a program analysis technique which

executes programs on symbolic rather than concrete inputs,
and it computes the program effects as functions in terms of
the symbolic inputs [17]. The behavior of a program P is
determined by the values of its inputs and can be described
by means of a symbolic execution tree where tree nodes are
program states and tree edges are the program transitions as
determined by the symbolic execution of program instructions.

The state s of a program is defined by the tuple (IP, V,PC)
where IP represents the next instruction to be executed, V is a
mapping from each program variable v to its symbolic value
(i.e., a symbolic expression in terms of the symbolic inputs),
and PC is a path condition. PC is a conjunction of constraints
over the symbolic inputs that characterizes those inputs that
follow the path from the program’s initial state to state s.
The current state s and the next instruction IP define the set
of transitions from s. The feasibility of the path conditions
is checked using off-the-shelf constraint solvers [18], as the
conditions are encountered during symbolic execution to detect
infeasible paths and to generate test inputs that execute feasible
paths. There are many tools that support symbolic execution
for programs [19], [20], [21]. For our implementation we use
Symbolic PathFinder – part of Java PathFinder tool set –
described below.

C. Java PathFinder and Symbolic PathFinder
Java PathFinder [22] (JPF) is an extensible run-time envi-

ronment for the verification of Java bytecode, i.e., compiled
Java programs. The analyses proposed here are incorporated
Symbolic PathFinder (SPF) [23], which extends JPF with a
symbolic execution mode. SPF uses JPF to systematically
generate and execute the symbolic execution tree of the code
under analysis and also to handle multi-threading. SPF uses
a variety of off-the-shelf decision procedures and constraint
solvers to solve the constraints generated by the symbolic
execution of bytecode programs.

In recent work [7], [8] SPF was extended with quantitative
reasoning which we leverage for quantifying the results.
Specifically, SPF uses a combination of symbolic execution
and model counting [24], [8] for computing the probability
of successful termination (and alternatively the probability of
failure) for a Java software component placed in a stochastic
environment.

D. SMT and weighted Max-SMT
A propositional variable p is an assertion that must be

true or false. A propositional variable p or its negation ¬p



i n t c = 32 , low = 0 , t im e = 0 ;
whi le ( c >= 0) {
i n t m = ( i n t ) Math . pow ( 2 , c ) ;
i f ( h igh >= m) {
low = low + m;
h igh = h igh � m;
t ime ++;

}
c = c � 1 ;
t ime ++;

}
low = 0 ;

Fig. 2. Example of timing channel

is called a literal. A clause is a disjunction of literals. A
propositional formula is a conjunction of clauses. The problem
of propositional satisfiability (SAT) is to determine, for a given
formula, whether or not it is satisfiable, i.e. if it has a model:
an assignment of Boolean values to variables that satisfies the
formula.

An extension of SAT is the satisfiability modulo theories
(SMT) problem [25]: which decides the satisfiability of a given
quantifier-free first-order formula with respect to a background
theory, such as linear arithmetic.

Max-SAT [26] is an extension of SAT to optimization.
Given a weighted formula '

w

where each clause C
i

has a
weight !

i

(positive or infinity), find the assignment such that
the sum of the weights of the falsified clauses is minimized.

The Max-SMT problem [5] is a generalization of the Max-
SAT problem to first-order theories: given a weighted first-
order formula '

w

, find a model that minimizes the sum of the
weights of the falsified clauses, or alternatively maximizes the
sum of satisfied clauses; we use the latter formulation here.
Several powerful SMT and Max-SMT solvers exist [18], [5]
and have been shown to work on industrial strength examples.

III. SYMBOLIC EXECUTION FOR SIDE-CHANNEL
ANALYSIS

Given a program P with “high” inputs (secret) and “low”
inputs (public) our goal is to compute information leakage via
side-channels, i.e. time or memory consumption, writing to a
file or socket etc. We base the computation of the leakage on
Shannon’s Information theory where the observables O are
the costs computed for each program path ⇡, denoted cost(⇡)
i.e. number of instructions executed along ⇡, number of bytes
allocated etc.

Thus we assume that each path can only give one observ-
able. Our work is done in the context of a project that specifi-
cally targets side-channels but it is applicable to more general
quantitative information flow analysis where this assumption
holds.

This approach is illustrated by the example in Fig. 2.
This program would leak all secrets (denoted by “high”)
into “low”, but since “low” is set to 0 at the end of the
program, the leakage into “low” is eliminated. However there
is a side time channel which reveals the number of 1s in the
binary representation of the variable “high” (the side channels
used to break RSA had this shape [27]). That side channel

can be captured by introducing an auxiliary “time” variable
as in Fig. 2. Intuitively, by introducing the variable “time”
we simulate an adversary observing the timing channel. By
observing the variable “time” at the end of the program we
can deduce the timing leakage of “high” so to recover the side
channel in terms of classical observables [3], [4]. Similarly, for
memory allocation we keep a variable that counts the number
of bytes allocated for example, according to the cost model
yielding a unified framework for detecting time/memory side
channels and for quantifying how many bits of information
are being leaked.

Notice that in practice we do not introduce an auxiliary
variable for time (or memory) but measure directly the cost of
executing each bytecode instruction, using JPF listeners (see
Section VII).

For the example in the Fig. 2, our analysis gives the result
that the leakage measured in channel capacity is 5.459 bits.

A. Computing Channel Capacity

To compute the Channel Capacity we perform a symbolic
execution over the program where both ”high” h and ”low” l
inputs are symbolic. We assume that the analyzed program is
deterministic and that the input domain is finite.

We run symbolic execution to collect all symbolic paths of
the program. Note that there is only a finite number of them.
Each symbolic path summarizes multiple (possibly many)
concrete program paths that follow the same instructions
through the analyzed code. For simplicity we will assume that
all the paths terminate within the prescribed bound. As this is
not always the case in general, in practice we can use a notion
of confidence (similar to [7]) that quantifies the impact of the
execution bound on the quality of the analysis.

Let P (h, l) be the (deterministic) program, and ⇡1,⇡2..⇡n

be the symbolic paths of P (h, l). Let PC1(h, l), PC2(h, l) . . .
PC

n

(h, l) be the path conditions (disjoint by construction)
computed with symbolic execution. Throughout the paper we
use lower-case h and l to denote symbolic high, respectively
low, inputs. Upper-case H and L denote concrete values.
Assume every PC contains at least one high variable (if not we
eliminate all the PC’s that only depend on low variables since
they leak no information). Note that h and l may represent
vectors of secrets and public values, respectively.

We can then extract the number of observables by counting
the number of paths that have different cost. For each symbolic
path ⇡

i

we compute its cost cost(⇡
i

) representing the side-
channel measurement along that path according to a cost
model.

Let O = {o1, o2, ...om}, with m  n, be the set of
observable costs. Note that different symbolic paths may have
the same cost but a path can not have more than one cost.
For the rest of the paper we use cost and observable inter-
changeably to refer to the side-channel measurement made
along a path. Since each path condition PC

i

has a one-to-
one correspondence to a path ⇡

i

, we also write cost(PC
i

)
to mean cost(⇡

i

). Furthermore, we write cost(P (H,L)) to
denote the cost of the (concrete) path followed by the program



on concrete values H and L. The Channel Capacity, i.e. the
maximal possible leakage is then:

CC(P ) = log2(|O|)

Note that this is an upper bound of the actual leakage of
the program. We discuss how to obtain tighter bounds in the
next section.

B. Computing Shannon Entropy

The Shannon entropy H(P ) gives a precise bound for
the leakage, when the secret distribution is known. We can
compute H(P ) using probabilistic symbolic execution [7] as
implemented in SPF. Let O = {o1, o2, ...om} be the set of
observables as defined before. For a uniform distribution over
the secret, the probability of observing o

i

is:

p(o
i

) =

P
cost(⇡

j

)=o

i

](PC
j

(h, l))

]D

Here ](PC
j

(h, l)) denotes the number of solutions (i.e. high
and low concrete values) of constraint PC

j

(h, l) (computed
with an off-the-shelf model counting procedure such as Latte)
and #D denotes the size of the input domain D assumed to
be (possible very large but) finite.

The Shannon entropy is then:

H(P ) = �
X

i=1,m

p(o
i

) log2(p(oi))

For deterministic systems, the Shannon entropy also gives a
measure of the leakage of the side-channel, corresponding also
to the observation gain (on the secret) after one round of
observation (see also Section V-B). Similar calculations can be
used to compute other information-theoretic metrics, e.g. one
can use the computed solution spaces to estimate the number
of tries needed to guess a secret.

Note that SPF already incorporates Latte [24] for quan-
tifying the solution spaces of mathematical linear-integer
constraints; SPF also uses several optimizations such as
simplifications, separate solving of independent constraints,
caching and composition of results [8] to perform the model
counting efficiently. For the example in the Fig. 2, our analysis
computes the Shannon entropy: 3.925 bits (we assume the
domain of variables is 0 . . . 104, uniform distribution).

For the rest of the paper we focus on the computation
of leakage using the channel capacity, since it gives worst-
case bounds. However our implementation supports computing
Shannon entropy as well.

IV. SINGLE-RUN ANALYSIS (ALGORITHM MaxLeak)

In the previous section we presented a symbolic execution
technique for computing the side-channel leakage after one
program run. However, in the analysis we did not distin-
guish between high and low values, resulting in an over-
approximation in the computed bounds. The problem is il-
lustrated by the example in Fig. 3.

void example1 ( i n t l , i n t h ){
i f ( l <0) {

i f ( h<0) c o s t =1 ;
e l s e i f ( h<5) c o s t =2 ;
e l s e c o s t =3 ;

} e l s e {
i f ( h>1) c o s t =4 ;
e l s e c o s t =5 ;

}
}

Fig. 3. Example 1

void example2 ( i n t l , i n t h ){
i f ( h>0} {

i f ( l <0) c o s t =1 ;
e l s e c o s t =2 ;

}
e l s e {

i f ( l <5) c o s t =1 ;
e l s e c o s t =4 ;

}
}

Fig. 4. Example 2

Here l denotes a public input while h denotes the secret;
cost captures the observed cost along each path in the
program. The number of possible observables for this program
is 5, yielding a leakage of log2(5) according to the formulation
from the previous section. However note that there is no public
input that can possibly achieve this leakage in a single program
run. Indeed, for l < 0 there are 3 possible observables (i.e.
different costs), while for l � 0 there are 2 observables.
Thus the maximum leakage of the program after one round of
observations is only log2(3).

Our goal is to compute automatically the value of the
“low” public input that results in the maximum number of
observables. This has a very important security meaning: it
reveals the most vulnerable behaviors of a program in one run
and the low input that trigger that behavior. Furthermore, that
low input value can be used for building multiple-run attacks
as described in next section.

The computation becomes more involved because for the
same concrete low input, there may be multiple symbolic paths
with different costs, corresponding to different values of the
high input. For example, for any negative values of l, there
are three symbolic paths corresponding to h < 0 (with cost
1), h � 0 ^ h < 5 (with cost 2) and h � 5 (with cost 3),
respectively.

Intuitively picking such a low value translates in the maxi-
mum information about a secret that an attacker can get from
observing one run of the program. Let us make this intuition
more precise.

A. Attackers knowledge

To find out the value of a secret H , an attacker picks a
value for the public input L, invokes the program P (H,L)
and observes the cost obs. In general the attacker can not
simply deduce H from obs but she can infer the constraints
on the secret that are coherent with the observation obs.

Following [10] we say that a secret H is coherent with
obs under L whenever P (H,L) has cost obs. Two secrets
H1 and H2 are indistinguishable under L if both P (H1, L)
and P (H2, L) yield the same cost, i.e. cost(P (H1, L)) =
cost(P (H2, L)). For every cost obs, the set of secret values
that are coherent with obs under L forms an equivalence class
of indistinguishability under L.

We propose to use symbolic execution to compute the
constraints on the secret h that are coherent with observation



obs under L. Notice that all the paths that lead to same cost
obs under input L satisfy the following constraint.

_

cost(PC

i

)=obs

PC

i

(h, L)

Here PC

i

(h, L) denotes the constraint PC
i

(h, l) where sym-
bolic value l was replaced with concrete value L.

It follows that, for given L, the set of observables (or
equivalence classes) induced by L is given by:

O
L

= {obs 2 O|9H.
_

cost(PC

i

)=obs

PC

i

(H,L)}

The “most powerful attacker” will want to pick a value L
that induces the partitioning with the maximum number of
equivalence classes (i.e. maximum number of observables),
since that will reveal the most information about the secret.
Such a maximal L would need to satisfy the maximum number
of clauses of the form

W
cost(PC

i

)=obs

PC

i

(h, l), for obs 2 O.
One solution would be to enumerate all the possible values

for the low input and for each low input L to compute
the cardinality of O

L

, |O
L

|. The low input that yields the
maximum number of observables is then returned to the user.
Although the input domain is assumed to be finite in practice
this explicit enumeration approach would be inefficient. We
present a symbolic approach below.

B. Max-SMT formulation

We first rename each path condition as follows: for each
PC

i

(h, l), we define PC
i

(h
i

, l) where all the high symbolic
values h have been renamed to fresh symbolic values h

i

.
Intuitively the renamed path conditions define constraints on
low variables (while the high variables are left unconstrained)
and the goal is to find the low input value that leads to the
maximum number of observations for any value of h. This
intuition has similarities with self composition [28], [29].

For example, for path condition PC1(h, l) : l < 0 ^ h < 0,
we re-write it as PC1(h1, l) : l < 0 ^ h1 < 0 while path
condition PC2(h, l) : l < 0 ^ h � 0 ^ h < 5, we re-write it
as PC2(h2, l) : l < 0 ^ h2 � 0 ^ h2 < 5 etc.

We formulate a Max-SMT problem by building a clause
for each cost, where the clause is the disjunction of the
PCs that lead to same cost, and the weight is 1. Intuitively
each clause defines an indistinguishability equivalence relation
as defined above. We then let Max-SMT solver pick the
value L that satisfies most clauses, meaning that it induces
the partitioning on the secret with the maximum number of
equivalence indistinguishability classes. Algorithm 1 outlines
our approach, where the input is a program P (h, l) and a
function cost that defines the cost for each program path.

Theorem 1: The solution returned by Algorithm 1 yields
maximum leakage for program P.

Proof 1: Let L be the solution for l, w be the total
weight and C

i1 , Ci2 ..Ci

w

be the set of satisfiable clauses
returned by Max-SMT. L induces a partitioning where each
equivalence class contains the secret values that satisfy one of
C

i1 , Ci2 ..Ci

w

. Since each clause has weight 1 and Max-SMT

Algorithm 1 MaxLeak: Single-Run Side-Channel Analysis
Inputs: Program P (h, l) and cost function cost.
Perform symbolic execution over P (h, l).
Compute path conditions PC1(h, l), PC2(h, l)..PC

n

(h, l).
Compute observables O = {cost(PC

i

(h, l))|i = 1, n}.
for each cost o

i

2 O do

Build Max-SMT clause with weight 1: C
i

:: (
W

cost(PC

j

)=o

i

PC

j

(h
j

, l))

end for

Solve C1, C2..Cm

with Max-SMT solver.
Let L be the solution returned by Max-SMT with weight w
return Low input value: L and max number of observables: w

returns the set of clauses that maximizes the weight it follows
that L induces the partitioning with the maximum number of
equivalence classes and hence maximum leakage.

C. Examples

Let us now analyze Example 1 using the Max-SMT formu-
lation. The example has 5 symbolic paths, with the following
(renamed) path conditions:
PC1 : l < 0 ^ h1 < 0 with cost 1,
PC2 : l < 0 ^ h2 � 0 ^ h2 < 5 with cost 2,
PC3 : l < 0 ^ h3 � 5 with cost 3,
PC4 : l � 0 ^ h4 > 1 with cost 4,
PC5 : l � 0 ^ h5  1 with cost 5.

Its encoding as a Max-SMT problem is as the set of the
following clauses, each with weight 1:
C1 :: (l < 0 ^ h1 < 0)
C2 :: (l < 0 ^ h2 � 0 ^ h2 < 5)
C3 :: (l < 0 ^ h3 � 5)
C4 :: (l � 0 ^ h4 > 1)
C5 :: (l � 0 ^ h5  1)

Max-SMT reports that C1, C2, C3 are satisfiable with
l = �1 as a solution (Max-SMT also gives solutions for
h1, h2, h3, h4, h5 which we ignore here) resulting in maximum
weight 3. Thus the low input that achieves maximum leakage
is l = �1 and the leakage is log2(3) = 1.58 bits.

Consider another example (see Figure 4). The example has
4 symbolic paths with following path conditions and costs:
PC1 : h1 > 0 ^ l < 0 with cost 1,
PC2 : h2 > 0 ^ l � 0 with cost 2,
PC3 : h3  0 ^ l < 5 with cost 1,
PC4 : h4  0 ^ l � 5 with cost 4.

Note that the paths that have conditions PC1 and PC3 both
have same cost (1). The Max-SMT clauses are as follows, each
with weight 1: C1 :: ((h1 > 0 ^ l < 0) _ (h3  0 ^ l < 5))
C2 :: (h2 > 0 ^ l � 0)
C3 :: (h4  0 ^ l � 5)

The result of Max-SMT solving is that for l = 0, the
first two clauses are satisfied with maximum weight 2, hence
maximum leakage is log2(2) = 1 bit.

V. MULTI-RUN ANALYSIS (ALGORITHM MaxLeak

k

)
We consider now the case where a malicious agent performs

a multi-run attack to gather information for deducing h or
narrowing down its possible values. Such an attack consists
of a sequence of attack steps, where each step consists in



querying the program on a chosen low input and measuring the
cost of the side-channel for that program run. An attack ends
if either the secret changes or if the attacker stops querying the
system. We consider the case of non-adaptive attacks, where
the attacker does not have access to the system’s responses
until the end of the attack. Thus, when choosing a message,
she cannot take into account the outcomes of her previous
queries.

Let us analyze the attacker’s knowledge after k rounds of
observation. Suppose that the attacker picked values L1, L2 ..
L
k

and observed the program k times, by running P (H,L
i

),
for i = 1 . . . k. Suppose each P (H,L

i

) leads to an observation
o
i

. Intuitively, with each new observation, the attacker can
infer more constraints on the secret, i.e., after k observations,
the attacker learns that the secret is coherent with o1 under
L1, with o2 under L2, .. and with o

k

under L
k

.
Similar to the single-run analysis, we say that two secret

values H1 and H2 are indistinguishable under input sequence
hL1, L2..Lk

i if they lead to the same observable sequence
ho1, o2, ..oki.

Proposition 1: The indistinguishability relation under
hL1, L2, ..Lk

i forms an equivalence relation on the secret
values.

Proof 2: Reflexivity, symmetry and transitivity are easy to
check because the program is deterministic. For example for
transitivity we need to show H1 ⇡ H2 and H2 ⇡ H3 implies
H1 ⇡ H3.
H1 ⇡ H2 means that H2 and H1 under input sequence

hL1, L2..Lk

i lead to the same observable sequence s, and
H2 ⇡ H3 means that H2 and H3 under input sequence
hL1, L2..Lk

i lead to the same observable sequence s0. Hence,
because the program is deterministic, s = s0 and H1 and H3

under input sequence hL1, L2..Lk

i lead to the same observable
sequence s.

The approach described in the previous section generalizes
naturally for a multi-run analysis, where in the case of a k-step
attack, we analyze the k-composition of the program, denoted
P
k

(h, l1, l2..lk):

P (h, l1);P (h, l2); ..P (h, l
k

)

In other words, we consider running the same program k
times, with different symbolic inputs: l1, l2..lk. Note that h
remains the same across the k runs (since the secret is the
same across the runs). Each path ⇡ in P

k

(h, l1, l2..lk) is a
composition of paths ⇡1;⇡2; ..⇡k

, where each ⇡
i

is a path
in the i-th program version, P (h, l

i

). We define the cost
cost

k

(⇡) = ho1, o2, ..oki, where each o
i

is the cost of ⇡
i

, i.e.,
an observable for the composite program is the sequence of k
side-channel measurements made during the attack. With the
new formulation of the observables, we can apply Algorithm 1
to P

k

(where the low input l is now the sequence hl1, . . . , lki)
to compute the sequence of low inputs that lead to the
maximum number of different observable tuples in k steps.
We denote this as MaxLeak

k

.

Theorem 2: The solution returned by Algorithm 1 for
P
k

(h, l1, l2..lk) and cost
k

yields maximum leakage for pro-
gram P after k runs.
Theorem 2 follows directly from Theorem 1 (the program
being analyzed is the k-composition of P and the cost function
is cost

k

).
Consider again Example 1 in Fig. 3. In two runs, Max-SMT

returns 4 satisfiable clauses out of 13 distinct clauses. Hence,
there are 4 observables and the maximum leakage is 2 bits.
The low inputs are l1 = 0 and l2 = �1. For Example 2 in
Fig. 4, in two runs, Max-SMT reports 2 satisfiable clauses
out of 7 clauses. Therefore the number of observables is 2,
the same as in the first run, and this is the maximum leakage
possible.

We also formalize here the intuition that the attacker obtains
more information about the secret with each program run. The
attacker obtains more information (or equivalently reduces the
uncertainty) about the secret as it refines the partition induced
by the input with each program run. If two values H1 and
H2 of the secret h are indistinguishable, then they are in the
same equivalence class in the equivalence relation. When the
attacker runs the program one more time, she can distinguish
more values of the secret h, by splitting some equivalence
classes (in other word, the equivalence relation is refined). This
results in more equivalence classes (likely of smaller sizes) so
the amount of information gained increases.

Proposition 2: Let w
k

and w
k+1 be the number of observ-

ables returned by Algorithm 1 for a k-run and k+1-run analysis
respectively. Then w

k

 w
k+1.

As a corollary we have that if the leakage is the same at
steps k and k+1, then that corresponds to maximum leakage
of the program [30].

A. Greedy Multi-run Analysis (Algorithm GreedyLeak

k

)

While in the previous section we have shown how to
compute maximal leakage over k runs, the above algorithm
doesn’t guarantee a specific leakage ordering, so for example
for a program with maximal leakage of 7 bits in two runs
Algorithm 1 could return an assignment where 2 bits are
leaked in the first run and 5 bits are leaked in the second
run.

An important leakage ordering is the one corresponding
to an attacker at each step picking the low input returning
the maximal leakage for that run. We can easily adapt our
previous algorithm to capture this attacker. To do so we should
proceed as follows: find the maximal L1 over one run using
Algorithm 1: consider then the maximal low input over two
runs where we have ”blocked” the clauses satisfied by L1,
we have now L1, L2 and we repeat until we have found
L1, . . . , Lk

.
The above algorithm is greedy, so it doesn’t necessarily

return the sequence with the maximal possible leakage at each
step. For example consider the case where L1 and L0

1 both
return the same maximal leakage in the first run but after
L1 the next maximal L2 returns a higher maximal leakage
than the maximal leakage that L0

2 returns after L0
1. Max-SMT



could choose L0
1 over L1 and so the sequence chosen by

the algorithm starting with L0
1, L

0
2, . . . would have a lower

leakage in the second element that the sequence starting with
L1, L2, . . . . We call this approach GreedyLeak

k

.
Other possible attackers can be modelled in a similar

fashion, e.g. an adaptive attacker that chooses the next low
input following the observables from the previous rounds. In
this case the attacker can be modelled as a function from
sequence of observables (the history) to low inputs (the next
input).

B. Information-theoretic metrics

Let us consider a generic function L measuring leakage in
bits, e.g. channel capacity or Shannon entropy, and suppose L
is capable to measure leakage over multiple runs of a program
P given low inputs l

i

. Let’s denote L(P (H,L1, . . . , Lk

)) the
leakage over k runs with low inputs L1, . . . , Lk

.
We can then define the information gain at the k + 1

run according to L and low inputs L1, . . . , Lk

, L
k+1 as

L(P
k+1(H,L1, . . . , Lk+1)) � L(P

k

(H,L1, . . . , Lk

)), that is
the difference between the leakage after k + 1 and k runs:
this is the leakage revealed by the k + 1 run of the pro-
gram P as measured by L. It is the secret revealed by
P (H,L

k+1) which had not been previously been revealed by
(P

j

(H,L1, . . . , Lj

))1jk

The remaining secrecy at the k-th run according to L is
defined as the difference between the initial secret and the
leakage according to L as measured after k runs: this is the
secret that has not been leaked in the k runs.

In the present work we concentrated on channel capacity as
the leakage measure L, that is the maximal leakage as mea-
sured according to Shannon entropy or Smith’s min entropy
[9]. In this setting we have that the information gain at the
k+1 run is the maximal leakage revealed by the k+1 run as
measured by Shannon or Min entropy. The remaining secrecy
at the k-th run is the secret that cannot have been leaked in
the k runs. This is the minimum amount of secrecy guaranteed
after k runs.

If we were to take as measure of leakage L Shannon
entropy, computed for example with model counting over
the constraints as outlined in section III-B, then the infor-
mation gain at the first step reduces to just the leakage (i.e.
H(P ) � 0 = H(P ) = L(P )) and the remaining secrecy at
the 1st step is just the remaining uncertainty, i.e. the posterior
entropy

H(h)� L(P ) = H(h)� (H(h)�H(h|P )) = H(h|P )

The above generalize to k runs, e.g. the remaining secrecy at
the k-th run would then be the remaining uncertainty about the
secret given k runs and the information gain at the k + 1 run
is the reduction in uncertainty about the secret induced by the
k + 1 run of the program. As Shannon entropy is, when we
know the distribution of the secret, a more precise measure
of leakage than channel capacity, the induced measures of
information gain and remaining secrecy will also be more
precise. For example since channel capacity can be a big

overestimation of leakage this will make remaining secrecy
according to channel capacity a big underestimation of the
non leaked secret. As a concrete example consider a password
check over 1000 elements: the remaining secrecy according to
channel capacity after one step will be log(1000) � 1 ' 8.9
whereas the real remaining secrecy is closer to 9.9 bits.

Notice that in terms of our algorithm an information gain
of 0 at k + 1 means that the number of equivalence classes
(maximal number of satisfied clauses) at round k and k + 1
is equal, i.e. nothing new about the secret can be revealed at
round k + 1. A particular case of information gain being 0 is
when the maximal number of satisfied clauses is d where d is
the size of the secret. In that case all secret has been revealed.

Note that our algorithms find the low inputs that maximize
the number of equivalence classes. Our tool can compute the
sizes of each partition (using model counting) to calculate
various measures such as Shannon entropy. Finding the input
that maximizes entropy for a specific distribution is future
work.

VI. DISCUSSION

A. Multi-threading

So far we assumed that the program under analysis is
sequential. We discuss here how to extend the analysis to
multi-threaded programs using maximal linear schedules (i.e.
thread interleavings) [7]. Suppose we have no knowledge
about the next-choice distribution or the specific scheduling
policy for the thread scheduler.

Intuitively each thread scheduling induces a sequential pro-
gram on which we can apply the leakage analysis as described
above. As there is a finite number of schedules for the current
exploration depths, we can therefore compute the low input
and maximum leakage for each one of them and report the
worst case to the user.

To account for multi-threading we need to extend the
definition of symbolic execution as well as the attacker model,
since an input may result in multiple program executions,
corresponding to different thread schedules. We replace IP
with a set of pairs (t

i

, IP
i

), where each t
i

identifies an active
thread and IP

i

represents the next instruction to be executed
by thread t

i

. A schedule S is a sequence t
i

, t
j

, ...t
k

defining
the order of access to the CPU for all the active threads. The
result of such an execution is a set of pairs (S

i

, PC
i

) where
PC

i

are path conditions and S
i

is the schedule associated
with the specific execution. We can record the schedules
produced by symbolic execution into a prefix tree and define
the maximal schedules:

Definition 1: A thread schedule is maximal if it is not
a prefix of any other schedule in the paths reported by a
(bounded) symbolic execution.

For a thread schedule S that is maximal, we define a set of
path conditions

⇧S = {PC
i

|S
i

2 prefix(S)}

where prefix(S) is the set of all the prefixes of S including S .
Intuitively ⇧S contains all the path conditions for the paths



that “follow” the same schedule S , accounting for possible
early termination.

For a maximal schedule the path conditions corresponding
to ⇧S cover the entire domain input [7]. Thus, ⇧S is the
result of symbolically executing program P (h, l) restricted
to schedule S which can be seen as executing a sequential
program PS(h, l). We can therefore compute the value of low
that maximizes leakage by applying Algorithm 1 to PS(h, l)
(essentially the path conditions computed by Algorithm 1 will
be the path conditions corresponding to each path in ⇧S ).
Maximal schedules can then be ordered according to their
worst leakage and the worst result is reported to the user. The
approach extends to multi-run analysis as well.

As an example, consider two threads:
T1 :: example1(l, h);
T2 :: l = �l;
As before, h and l are inputs. Method example1 is

described in Figure 3. Assume for simplicity that thread 1
invokes method example1 atomically (e.g. in a synchronized
block). Then l=-1 gives 3 observables for thread schedule
“T1;T2” but only 2 observables for “T2;T1”. Thus, there may
be more than one program execution associated with an input,
each with different observations, and only some executions
give the worst leakage.

Note that the number of possible thread interleavings may
be very large and ennumerating all of them may be infeasible.
The problem can be addressed by partial order reduction
(POR), supported by Java Pathfinder. POR exploits the com-
mutativity of concurrently executed instructions, which result
in the same state when executed in different orders.

Note also that the non-determinism introduced by multi-
threading produces some ”noise” that makes the leakage
smaller [31], [32] and this is not captured by our analysis.
However, if the attacker is allowed to observe the scheduling
sequence, the leakage increases as in the example. Further-
more, our analysis produces a thread schedule which can be
analyzed by developers for debugging and can thus be quite
useful in practice.

Further there are more powerful notions of tree-like [33]
and probabilistic schedulers [31], [32] that would allow us to
compute more precise information on the leakage. We plan to
explore them in depth for future work.

B. Garbage Collection

The view of the adversaries as defined in this paper disre-
gards the memory management handled by garbage collection
whose execution is unpredictable and may affect the side
channel measurements. Our analysis can be adapted to more
refined cost models and different garbage collection policies
by modifying and controlling the scheduler and the garbage
collection inside JPF’s custom JVM.

Nondeterminism and multi-threading also provide a pow-
erful mechanism for studying the effects of the garbage
collection, whose role is to find the unnecessary (garbage)
objects and to remove them. We can view the garbage collector
as a separate thread that interferes with the execution of

boolean check ( byte [ ] s e c r e t , byte [ ] i n p u t ){
f o r ( i n t i = 0 ; i < SIZE ; i ++){

i f ( s e c r e t [ i ] != i n p u t [ i ] ){
re turn f a l s e ;

}
Thread . s l e e p (25L ) ;

}
re turn true ;

}

Fig. 5. Password Check

the program analysis, affecting both its execution time and
memory execution costs. Our tool implements a custom VM
which allows to experiment with different garbage collection
policies. We leave this for future work.

VII. IMPLEMENTATION AND EXPERIENCE

We implemented our analysis in Symbolic PathFinder [23].
We use Z3 [18] (bit-vector theory) for SMT and Max-SMT
solving. We implemented JPF listeners to monitor the bytecode
instructions executed by the program, and to perform the anal-
ysis on the following possible type of side-channels: timing
(by measuring execution time of each instruction according to
a cost model), memory-usage (by computing the number of
live heap objects along a path), network and file communi-
cation (by providing models for network and file interactions
and computing number of bytes written to an output stream
or file via methods write of java.io.OutputStream
and java.io.FileOutputStream respectively). For ex-
periments we used a simple timing model that allows easy
comparison with ACSAC.

We evaluated our implementation based on two sets of
experiments.

• We compared the single-run analysis (i.e. Algorithm
MaxLeak, various configurations) with another symbolic
approach, ACSAC [6] (described in detail below) and
with brute-force enumeration (the baseline for our ap-
proach).

• We also evaluated the multi-run analysis (MaxLeak
k

)
for increasing number of k. We compared the “full ap-
proach” MaxLeak

k

, which computes the input sequence
all at once using Max-SMT solving, with the “greedy”
approach GreedyLeak (described in Section V-A) which
computes the inputs one by one.

We analyzed a set of Java examples for the different side
channels described above. Here we describe in detail the
analysis of two representative examples: password checking
and cryptographic functions (which we could convert easily
into C allowing a comparison with ACSAC).

All the experiments were run on a standard MacBook Pro
with 2.2 GHz Intel Core i7 and 16 GB 1600 MHz DDR3.

A. Examples

Timing channel in password check Fig. 5 shows the code
of a simple segmented password checking program. Here



secret represents the “high” value and input is the “low”
value; both secret and input have the same SIZE (i.e.
the same length as strings). The code checks the password
and the input character by character and returns false as soon
a mismatching character is found. This implementation is
insecure against an attacker measuring the time taken by the
method to return “true” or “false”. We analyzed this example
for different values of SIZE and element range.
Timing channel in cryptographic functions Fig. 6 shows
the implementation of fast modular exponentiation [27] – an
operation that is typically found in asymmetric cryptographic
algorithms such as RSA used by modern computers to encrypt
and decrypt messages. Here e is the secret, num is the public
input, and m is a constant (the product of two prime numbers).
Method modPow1 iterates over the bits in the secret e (the
while loop) and performs different computations based on
whether the bit is 1 or 0. The timing channels in this kind
of functions result from the fact that modular multiplication
is not constant time: for some operands it takes longer than
for others (because a so-called extra reduction step). With the
reduction step one gets a subtler dependency between low
input num, key e, and timing. By varying the low input, an
attacker can in some circumstances guess the key [34]. To
study this phenomenon, we modified the algorithm to include
a simple reduction step (see Fig. 7; second if statement
has a dependency on low input that can be exploited for an
attack). Other more involved methods are treated similarly.
We analyzed the program for different values of the modulo
m (where num is bound by m) and different e lengths.

While the password check involves only simple computa-
tions, the analysis of modular exponentiation results in non-
linear constraints that are hard to solve with existing constraint
solvers, and hence it is good to stress-test our proposed
technique.

B. MaxLeak (default) vs. MaxLeak (No Solver)

We note that in our approach there is some redundancy
between the solving performed by SPF and the solving per-
formed by Max-SMT. We therefore compared MaxLeak with
two configurations: running SPF with and without the solver.
With the first option (default), SPF uses constraint solving to
rule out infeasible PCs, so only the feasible PCs are used in
the Max-SMT calculation. With the second option (No Solver),
SPF performs no solving, and collects all the PCs (including
the infeasible ones) and sends them to Max-SMT for solving
(which implicitly also rules out infeasible PCs).

C. The ACSAC [6] approach

Most of the previous work on automated QIF (Section VIII)
performs the analysis assuming the “low” input is given. While
this is a sound assumption, since the low input is controlled
or at least is known by the attacker, those techniques cannot
synthesize the low inputs that maximize the leakage. An
exception is the work in [6]: the technique is capable, in the
case of a single run, to determine if the leakage is at least k
bits, and provide a low input that makes the program leak k

bits. As such ACSAC [6] is a good candidate to benchmark
the performance of our approach for the single run analysis.
At a high level, ACSAC computes the self-composition of k
copies of the program, and computes an assertion that these
k copies cannot create k different observables. The bounded
model checker CBMC [35] is then used to verify this assertion.

To perform the comparison with ACSAC we manually
translated the programs in C code (the input language of
CBMC) and instrumented the code by adding a time variable
to simulate an adversary observing the timing channel (as
described in Section III). The values of the time variable
at the end of the program constitute the “observables” for the
ACSAC approach. Note also that CBMC uses a different solver
than Z3, which is better for bitvectors [35].

For ACSAC we report the time it takes in the last step to
validate the assertion (note that in reality ACSAC performs an
iterative approach, for an increasing number of observables,
until the assertion becomes valid, so the overall time is higher
than the one we report).

D. Results and Discussion

The results of the single-run experiments are shown in
Figures 8 and 9, while the results for the multi-run experiments
are shown in Figures 10 and 11.

In the tables, k is the number of steps (for the multi-run
analysis), maxObs is the maximum number of observables
reported by Max-SMT, #PCs is the number of PCs reported
by SPF, #Obs is the number of clauses, time SPF is time to
run SPF in seconds, and time Max-SMT is the time to run
Max-SMT in seconds. A “–” means analysis timed out in 1
hour.

For single-run, MaxLeak (No Solver) performs better than
MaxLeak(default). The time for running SPF is much smaller
(since it uses no solving) but the number of generated paths
may be very large (since it also includes infeasible paths) up
to the point that Max-SMT can no longer solve the generated
clauses (last line in Figure 9).

The results also show that ACSAC does not scale well
for the single-run analysis1. The reason is that for a single
run, ACSAC requires the composition of NObs copies of
the program to validate the assertion (where NObs is the
number of possible observations in one run). In contrast,
MaxLeak uses only one copy of the program for the single-run
analysis. Thus, although we use different tools and different
solvers for the comparison, we believe there is an inherent
complexity problem with the ACSAC approach (supported by
our experiments).

For multi-run analysis, the results show, as expected, that
MaxLeak is more expensive than GreedyLeak, both in the
number of PCs generated and the analysis time (where the
Max-SMT solving time is dominant). On the other hand
GreedyLeak does not always returns the maximum leak-
age: Fig. 11 shows the number of observables returned by

1The time-out at small configurations in Figure 9 may be due to some hard
to solve constraints that are unsat at smaller configurations but become sat
when m is larger.



i n t modPow1 ( i n t num , i n t e , i n t m){
i n t s = 1 , y = num , r e s =0;
whi le ( e > 0) {

i f ( e % 2 == 1) {
r e s = ( s ⇤ y ) % m;

} e l s e {
r e s =s ;

}
s = ( r e s ⇤ r e s ) % m;
e /= 2 ;

}
re turn r e s ;

}

Fig. 6. Modular Exponentiation

i n t modPow2 ( i n t num , i n t e , i n t m){
i n t s = 1 , y = num , r e s =0;
whi le ( e > 0) {

i f ( e % 2 == 1) {
/ / r e d u c t i o n :
i n t tmp = s ⇤ y ;
i f ( tmp > m){

tmp = tmp � m;

}
r e s = tmp % m;

} e l s e {
r e s =s ;

}
s = ( r e s ⇤ r e s ) % m;
e /= 2 ;

}
re turn r e s ;

}

Fig. 7. Simple Reduction

SIZE maxObs
MaxLeak (default) MaxLeak (No solver)

ACSAC
#PC #Obs time SPF time Max-SMT #PC #Obs time SPF time Max-SMT

10 11 11 11 0.561 0.046 11 11 0.333 0.047 2m33.349

50 51 51 51 8.662 4.958 51 51 0.566 5.07 -

100 101 101 101 59.852 36.061 101 101 0.932 36.983 -

200 201 201 201 7m50.156 16m29.761 201 201 3.086 16m37.846 -

Fig. 8. Single-run analysis of password check (range 1..62). Brute force times out in all configurations

Modulo Len maxObs
MaxLeak (default) MaxLeak (No solver)

ACSAC BruteForce
#PC #Obs time SPF time Max-SMT #PC #Obs time SPF time Max-SMT

1717

3 6 13 6 8.830 0.483 40 9 0.417 0.763 1m22.537 0.103

4 9 38 9 1m9.719 1.675 121 12 0.569 4.264 - 0.099

5 12 107 12 6m10.376 7.585 364 15 0.899 27.448 - 0.097

6 15 285 15 27m26.593 34.665 1093 18 1.967 3m59.985 - 0.110

7 18 - - - - 3280 21 6.367 43m5.840 - 0.122

834443

3 6 13 6 4.810 0.398 40 9 0.421 0.811 - 0.328

4 9 40 9 24.222 2.151 121 12 0.557 5.491 - 0.661

5 12 121 12 1m59.615 10.387 364 15 0.866 25.362 - 1.621

6 15 364 15 8m50.549 1m12.780 1093 18 1.997 3m50.015 - 4.402

7 18 1093 18 37m49.129 6m6.093 3280 21 6.487 41m20.159 - 9.739

1964903306

3 6 13 6 5.138 0.509 40 9 0.436 1.010 5.211 6m52.263

4 9 40 9 50.067 3.119 121 12 0.604 5.525 1m5.912 18m19.167

5 12 121 12 7m58.086 1m5.797 364 15 0.980 1m0.471 10m47.589 47m18.512

6 15 - - - - 1093 18 2.002 31m42.575 - -

7 18 - - - 3280 21 8.455 - - -

Fig. 9. Single-run analysis of modPow2 (Len is e’s length in bits).

GreedyLeak vs MaxLeak or brute force, when they can
complete. Adding a backtracking mechanism to GreedyLeak
could address the problem.

The “no solver” option performs well for the password
check but for modPow this option generates so many paths that
we could not obtain any result from Max-SMT. This may be
due to some bottleneck in the front-end of the solver which we
hope to solve in the future. We are talking to the Z3 developers
to explore a better integration between the Z3 solving on the
SPF side and Max-SMT.

As expected, the brute-force approach performs well for
small configurations, but it becomes intractable for larger

sizes. In our experiments with modulo exponentiation, brute
force did outperform MaxLeak in single-run analysis for small
values of m. However, for a large m, which is often the case
in cryptographic systems, MaxLeak outperformed brute force.
This is even clearer in the multi-run analysis when brute force
failed to synthesize any 3-run attacks, even for a small value
of m.

Nevertheless, all compared approaches suffer from scala-
bility issues as the length of the secret increases. However,
we noticed that the experiments expose some regularity in the
results. For example, for single-run, the maximum number of
observables for the password check is SIZE + 1 while for



RANGE SIZE k
MaxLeak

k

(No solver) GreedyLeak
k

(No solver)

#PC #Obs maxObs time SPF time Max-SMT #PC #Obs maxObs time SPF time Max-SMT

2

2 2 9 9 4 0.652 0.042 9 9 4 0.104 0.030

3
2 16 16 6 0.685 0.115 16 16 6 0.113 0.088

3 64 64 7 0.736 2.797 64 64 7 0.151 1.154

4 256 256 8 1.008 1m33.259 256 256 8 0.202 15.425

4

2 25 25 8 0.695 0.382 25 25 8 0.154 0.306

3 125 125 10 0.884 18.147 125 125 10 0.211 9.495

4 625 625 12 1.156 17m41.007 625 625 12 0.404 3m28.896

5 3125 3125 - 2.555 - 3125 3125 - 1.321 -

3

2

2 9 9 5 0.680 0.036 9 9 5 0.099 0.031

3 27 27 6 0.693 0.272 27 27 6 0.114 0.140

4 81 81 7 0.809 4.255 81 81 7 0.130 0.593

5 243 243 8 0.937 1m5.058 243 243 8 0.182 4.867

6 729 729 9 1.229 13m9.257 729 729 9 0.307 57.014

3

2 16 16 7 0.678 0.115 16 16 7 0.111 0.088

3 64 64 9 0.761 2.464 64 64 9 0.147 1.304

4 256 256 11 0.951 1m6.886 256 256 11 0.222 28.445

5 1024 1024 13 1.400 33m31.888 1024 1024 13 0.441 5m52.209

6 4096 4096 - 2.837 - 4096 4096 - 1.417 -

Fig. 10. Multi-run analysis of password check. Brute force takes a couple of seconds.

Modulo Len k
MaxLeak

k

(default) GreedyLeak
k

(default) BruteForce

#PC #Obs maxObs time SPF time Max-SMT #PC #Obs maxObs time SPF time Max-SMT maxObs time

1717

3 2 31 14 7 1m49.327 6.101 13 10 7 11.072 3.901 7 0.144

4
2 128 29 15 17m28.882 47.972 38 19 14 1m15.528 6.614 15 4.792

3 38 30 15 1m46.254 18.051

5
2 - - - - - 107 31 24 8m11.855 13.077 27 11.996

3 - - - - - 107 64 29 9m32.251 1m16.879 - -

4 - - - - - 107 75 31 9m49.246 1m16.903 - -

6

2 - - - - - 285 46 35 38m05.420 51.766 40 28.820

3 - - - - - 285 108 52 41m14.786 3m34.222 - -

4 - - - - - 285 157 59 43m48.355 3m36.526 - -

5 - - - - - 285 178 63 46m08.591 3m55.498 - -

834443

3 2 31 14 7 40.518 2.067 13 11 7 8.078 0.384 - -

4
2 156 29 15 7m04.709 36m49.891 40 18 14 45.272 11.351 - -

3 40 26 15 1m01.474 4.973 - -

5
2 - - - - - 121 32 26 3m42.725 1m53.156 - -

3 - - - - - 121 58 - 4m34.153 - - -

6 2 - - - - - 364 55 - 15m20.872 - - -

1964903306

3 2 31 14 7 47.246 2.945 13 9 7 8.276 1.183 - -

4
2 156 29 - 15m29.818 - 40 20 14 1m13.667 32.551 - -

3 - - - - - 40 29 - 1m15.041 - - -

5 2 - - - - - 121 31 - 12m18.071 - - -

Fig. 11. Multi-run analysis of modPow2.





modPow it is 3 ⇤ (Length � 1). This suggests that one can
extrapolate from these results and get the vulnerability for
larger input configurations, even if they can not be analyzed
directly using symbolic execution. We plan to investigate this
further.

Note also that the password check is a special case where
the choice of the low input in a single run is irrelevant.
Therefore the results for a single run are not very illuminating.
However the results (both for single- and multi-run analysis)
do support the fact that our symbolic techniques perform well
when only simple linear constraints are involved, and can
potentially scale to large programs. Note also that in the case
of linear constraints, other solvers can perform much better
than Z3bitvector. However, solvers struggle in the presence of
non-linear constraints (as for the modPow example).

We also performed some preliminary experiments with an
adaptive greedy approach (see Section V-A) which creates a
new Max-SMT problem with each new observation made. Our
preliminary results indicate that the adaptive approach could
scale much better than the non-adaptive one: although we need
to solve more Max-SMT problems than in the non-adaptive
case, each problem is smaller and therefore easier to solve.
Furthermore adaptive strategies may result in smaller “attack”
sequences and may be more appropriate for examples such
as the password check (e.g. to model an attack that guesses
the password character by character). We plan to explore this
topic in depth in the future.

E. Security relevance of experiments

Let us give some intuition on what these experiments mean
from a security point of view.

Consider the password experiments shown in Figure 10 and
consider for example the case: range 2, size 3, i.e. we have a
3 bits secret. For 3 runs (k=3) the results indicate 7 maxObs
hence the channel capacity is log2(7) ' 2.8 bits which means
that all the secret is at most leaked in the three runs. It is easy
to see that this is a tight bound.

Similarly, consider the modulus exponentiation in Figure 11
with modulus 1717 and a 6 bits secret; then in 5 runs using
GreedyLeak we found 63 maxObs i.e. at most 5.9(=log2(63))
bits can be leaked, which is basically all the secret. This is
also a tight bound, which is rather surprising by looking at the
code.

It is in fact easy to demonstrate that the bounds obtained by
our analysis are tight: by proposition 1 the indistinguishability
relation under hL1, L2, ..Lk

i forms an equivalence relation on
the secret values, and each observable represents an equiva-
lence class on the secret. There are 63 observables and 63
secrets (this is because the secret cannot take the value 0),
which implies each class has only one element, which means
that each observables is associated to a unique secret, and so
all the secret is leaked.

Note also that the GreedyLeak
k

approach is capable of
obtaining tight bounds on the leakage, but, as expected,
the attack sequence may be larger than for MaxLeak

k

. For
example, in Figure 11, modulus 1717 and password length 4

bits, the greedy approach gives 3 runs to obtain the maximum
number of observables (15) while the same information can
be obtained only with two runs (shown with MaxLeak

k

).
Finally note that Max-SMT also generates the concrete

solutions for the low input sequence, showing the developers
how to precisely obtain the program executions that lead to
maximum leakage.

VIII. RELATED WORK

Side-channel attacks have been well studied in the liter-
ature [10], [1], [27] however there are few automated ap-
proaches that are able to quantify information leakage over
multiple runs [10], [36].

Köpf and Basin [10] developed an automated approach
for multi-run analysis in a more general setting, address-
ing adaptive attacks. However the technique is based on an
enumeration algorithm (doubly-exponential in the number of
attack steps); they also present a greedy heuristic to compute
the remaining entropy of the secret after k steps in the context
of adaptive attacks. We propose here a symbolic approach
that leverages Max-SMT solving to avoid an explicit search
of best attacks. Our experiments show the technique has
merits compared with brute-force enumeration, indicating its
potential for synthesizing adaptive attacks as well. We leave
this for future work.

Heusser and Malacaria [6] use the model checker CBMC
to determine the public input that results in maximal leakage
in the more general context of quantitative flow analysis.
The technique requires an n-step composition of the program,
where n is the number of different observations one can make
in one run of the program, and does not address multi-run
analysis. Our technique can determine the same information
from the analysis of only one program run but it is limited
to the specific context of side-channel analysis. We showed
experimentally that the Max-SMT approach can be much
better in practice.

Backes et al. [37] use symbolic techniques and model count-
ing for quantitative information flow analysis but they assume
a-priori knowledge of the public inputs. Previous work [12],
[15], [16] has used symbolic execution for quantitative flow
analysis in the simpler context of single-run attacks where only
upper-bounds on the leakage are computed. That work does
not compute the public user input that maximizes the leakage,
it does not address multi-run attacks and it does not use
probabilistic symbolic execution for computing information
theoretic metrics – all our contributions here.

Mardziel et al. [36] generalizes the work of Köpf and
Basin [10] by considering probabilistic systems to account
for secrets that change over time. They use probabilistic
programming to implement a model of information flow for
probabilistic, interactive systems with adaptive adversaries and
to compute the leakage. This suggests a possible connection
with the probabilistic capabilities of SPF that we plan to
explore in future work.

Cache side channels are studied extensively in [13], [14]
although not in a multi-run setting. Our tool is built on top of



JPF, a custom VM with its own memory model, and can thus
analyze some memory side-channels but we do not currently
model architecturespecific cacheside channels as in [13], [14]
which we leave for future work.

IX. CONCLUSION

We described a symbolic execution approach to side-
channels detection and quantification. We defined a new
application of Max-SMT solving to identify the low input
triggering the most vulnerable behavior of the program and
analyze leakage of multi-run attacks. We implemented the
analysis in Symbolic PathFinder and showed its merit on
several examples.

We made few attempts to optimizing our implementation
and at present it does not scale when the number of time
steps is large. However we note that the research area of Max-
SMT solving is still very young and we are optimistic that it
will increase in the future attaining the level of maturity of
SMT solving that has grown explosively in the past decade.
Further our analysis may benefit from a tighter integration
between the symbolic exploration and the Max-SMT solving
and from distributing the analysis, e.g. by creating parallel
versions of the symbolic execution engine and creating a new
parallel job with each new observation made. Other areas for
future work include investigating the use of qCoral [8] for
quantifying solution spaces over non-linear constraints and
extending our analysis for leakage computation in the presence
of noisy observations.
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